16 resultados para Cytoskeleton

em DigitalCommons@The Texas Medical Center


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cellular invasion represents a critical early step in the metastatic cascade, and many proteins have been identified as part of an “invasive signature.” The non-receptor tyrosine kinase Src is commonly upregulated in breast cancers, often in conjunction with overexpression of EGFR. Signaling from this pathway stimulates cell proliferation, migration, and invasion and frequently involves proteins that regulate the cytoskeleton. My data demonstrates that inhibition of Src, using the small-molecule inhibitor dasatinib, impairs cellular migration and invasion. Furthermore, Src inhibition sensitizes the cells to the effects of the chemotherapeutic doxorubicin resulting in dramatic, synergistic inhibition of proliferation with combination treatments. The Src-targeted protein CIP4 (Cdc42-interacting protein 4) associates with curved plasma membranes to scaffold complexes of Cdc42 and N-WASp. In these experiments, I show that CIP4 overexpression correlates with triple-negative biomarker status, cellular migration, and invasion of (breast cancer cells. Inhibition of CIP4 expression significantly decreases migration and invasion. Furthermore, I demonstrate the novel finding that CIP4 localizes to invadopodia, which are finger-like projections of the actin cytoskeleton that are associated with matrix degradation and cellular invasion. Depletion of CIP4 in invasive cells impairs the formation of invadopodia and the degradation of gelatin. Therefore, CIP4 is a critical component of the invasive phenotype acquired by human breast cancer cells. In this body of work, I propose a model in which CIP4 promotes actin polymerization by stabilizing the active conformation of N-WASp. CIP4 and N-WASp are both phosphorylated by Src, implicating this pathway in Src-dependent cytoskeletal rearragement. This represents a novel role for F-BAR proteins in migration and invasion.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Catenins have diverse and powerful roles in embryogenesis, homeostasis or disease progression, as best exemplified by the well-known beta-catenin. The less studied delta-catenin likewise contains a central Armadillo-domain. In common with other p120 sub-class members, it acts in a variety of intracellular compartments and modulates cadherin stability, small GTPase activities and gene transcription. In mammals, delta-catenin exhibits neural specific expression, with its knock-out in mice correspondingly producing cognitive defects and synaptic dysfunctions. My work instead employed the amphibian, Xenopus laevis, to explore delta-catenin’s physiological functions in a distinct vertebrate system. Initial isolation and characterization indicated delta-catenin’s expression in Xenopus. Unlike the pattern observed for mammals, delta-catenin was detected in most adult Xenopus tissues, although enriched in embryonic structures of neural fate as visualized using RNA in-situ hybridization. To determine delta-catenin’s requirement in amphibian development, I employed anti-sense morpholinos to knock-down gene products, finding that delta-catenin depletion results in developmental defects in gastrulation, neural crest migration and kidney tubulogenesis, phenotypes that were specific based upon rescue experiments. In biochemical and cellular assays, delta-catenin knock-down reduced cadherin levels and cell adhesion, and impaired activation of RhoA and Rac1, small GTPases that regulate actin dynamics and morphogenetic movements. Indeed, exogenous C-cadherin, or dominant-negative RhoA or dominant-active Rac1, significantly rescued delta-catenin depletion. Thus, my results indicate delta-catenin’s essential roles in Xenopus development, with contributing functional links to cadherins and Rho family small G proteins. In examining delta-catenin’s nuclear roles, I identified delta-catenin as an interacting partner and substrate of the caspase-3 protease, which plays critical roles in apoptotic as well as non-apoptotic processes. Delta-catenin’s interaction with and sensitivity to caspase-3 was confirmed using assays involving its cleavage in vitro, as well as within Xenopus apoptotic extracts or mammalian cell lines. The cleavage site, a highly conserved caspase consensus motif (DELD) within Armadillo-repeat 6 of delta-catenin, was identified through peptide sequencing. Cleavage thus generates an amino- (1-816) and carboxyl-terminal (817-1314) fragment each containing about half of the central Armadillo-domain. I found that cleavage of delta-catenin both abolishes its association with cadherins, and impairs its ability to modulate small GTPases. Interestingly, the carboxyl-terminal fragment (817-1314) possesses a conserved putative nuclear localization signal that I found is needed to facilitate delta-catenin’s nuclear targeting. To probe for novel nuclear roles of delta-catenin, I performed yeast two-hybrid screening of a mouse brain cDNA library, resolving and then validating its interaction with an uncharacterized KRAB family zinc finger protein I named ZIFCAT. My results indicate that ZIFCAT is nuclear, and suggest that it may associate with DNA as a transcriptional repressor. I further determined that other p120 sub-class catenins are similarly cleaved by caspase-3, and likewise bind ZIFCAT. These findings potentially reveal a simple yet novel signaling pathway based upon caspase-3 cleavage of p120 sub-family members, facilitating the coordinate modulation of cadherins, small GTPases and nuclear functions. Together, my work suggested delta-catenin’s essential roles in Xenopus development, and has revealed its novel contributions to cell junctions (via cadherins), cytoskeleton (via small G proteins), and nucleus (via ZIFCAT). Future questions include the larger role and gene targets of delta-catenin in nucleus, and identification of upstream signaling events controlling delta-catenin’s activities in development or disease progression.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Altering the number of surface receptors can rapidly modulate cellular responses to extracellular signals. Some receptors, like the transferrin receptor (TfR), are constitutively internalized and recycled to the plasma membrane. Other receptors, like the epidermal growth factor receptor (EGFR), are internalized after ligand binding and then ultimately degraded in the lysosome. Routing internalized receptors to different destinations suggests that distinct molecular mechanisms may direct their movement. Here, we report that the endosome-associated protein hrs is a subunit of a protein complex containing actinin-4, BERP, and myosin V that is necessary for efficient TfR recycling but not for EGFR degradation. The hrs/actinin-4/BERP/myosin V (CART [cytoskeleton-associated recycling or transport]) complex assembles in a linear manner and interrupting binding of any member to its neighbor produces an inhibition of transferrin recycling rate. Disrupting the CART complex results in shunting receptors to a slower recycling pathway that involves the recycling endosome. The novel CART complex may provide a molecular mechanism for the actin-dependence of rapid recycling of constitutively recycled plasma membrane receptors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In order to more fully understand the function of surface GalTase on mesenchymal cells, anti-GalTase IgG was used to (a) examine the role of surface GalTase during mouse mesenchymal cell migration on laminin and fibronectin; (b) define the plasma membrane distribution of GalTase by indirect immunofluorescence on migrating cells; (c) quantitate the level of surface GalTase on migrating cells; and (d) determine whether GalTase is associated with the cytoskeleton.^ Results show that anti-GalTase IgG was able to inhibit migration (48-80% as compared to basal rate) when cells were migrating on laminin-containing matrices. Monovalent Fab fragments inhibited migration on laminin by 90% after 4 hours. On the other hand, anti-GalTase IgG had no effect on cells migrating on fibronectin. This illustrates the substrate specificity of GalTase mediated-migration. When anti-GalTase IgG was used to localize surface GalTase on cells migratory on laminin, the enzyme was restricted to the leading and trailing edges of the cell. Assays indicate that GalTase is elevated approximately 3-fold when cells are migrating on laminin-containing matrices as compared to migratory cells on plastic or fibronectin, or as compared to stationary cells on any substrate. Laminin appears to recruit GalTase from preexisting intracellular pools to the growing lamellipodia.^ Double-label indirect immunofluorescence studies indicate that there is an apparent co-localization between some of the surface GalTase and some actin filaments. This relationship was explored by extracting cells prelabeled with anti-GalTase IgG and quantitated by radiolabeled second antibodies. Results show that 79% of the surface GalTase is associated with the cytoskeleton (as judged by detergent insolubility) when monovalent antibodies (Fab) are used. However virtually all (80-100%) of the surface GalTase can be induced to associate with the cytoskeleton when cross-linked with bivalent antibodies. Furthermore, when cells in suspension are incubated with divalent antibodies, an additional 66% of the surface GalTase can be induced to associate with the cytoskeleton. The elevated levels of surface GalTase detectable on cells migrating on laminin also appear to be associated with the cytoskeleton.^ Several lines of evidence suggest that GalTase is associated with F-actin. Data suggest that laminin induces the expression of surface GalTase to the growing lamellipodia where it becomes associated with the cytoskeleton leading to cell spreading and migration. (Abstract shortened with permission of author.) ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rate and direction of fibroblast locomotion is regulated by the formation of lamellipodia. In turn, lamellipodal formation is modulated in part by adhesion of that region of the cell from which the lamellipodia will extend or orginate. Cell surface $\beta$1,4-galactosyltransferase (GalTase) is one molecule that has been demonstrated to mediate cellular interactions with extracellular matrices. In the case of fibroblasts, GalTase must be associated with the actin cytoskeleton in order to mediate cellular adhesion to laminin. The object of this study was to determine how altering the quantity of GalTase capable of associating with the cytoskeleton impacts cell motility. Stably transfected cell lines were generated that have increased or decreased levels of surface GalTase relative to its cytoskeleton-binding sites. Biochemical analyses of these cells reveals that there is a limited number of sites on the cytoskeleton with which GalTase can interact. Altering the ratio of GalTase to its cytoskeleton binding sites does not affect the cells' abilities to spread, nor does it affect the localization of cytoskeletally-bound GalTase. It does, however, appear to interfere with stress fiber bundling. Cells with altered GalTase:cytoskeleton ratios change their polarity of laminin more frequently, as compared to controls. Therefore, the ectopic expression of GalTase cytoplasmic domains impairs a cell's ability to control the placement of lamellipodia. Cells were then tested for their ability to respond to a directional stimulus, a gradient of platelet-derived growth factor (PDGF). It was found that the ability of a cell to polarize in response to a gradient of PDGF is directly proportional to the quantity of GalTase associated with its cytoskeleton. Finally, the rate of unidirectional cell migration on laminin was found to be directly dependent upon surface GalTase expression and is inversely related to the ability of surface GalTase to interact with the cytoskeleton. It is therefore proposed that cytoskeletal assembly and lamellipodal formation can be regulated by the altering the ratio of cytoplasmic domains for specific matrix receptors, such as GalTase, relative to their cytoskeleton-binding sites. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

$\beta$1,4-Galactosyltransferase (GalTase) is unusual among the glycosyltransferases in that it is found in two subcellular compartments where it performs different functions. In the trans-Golgi complex, GalTase participates in oligosaccharide biosynthesis as do other glycosyltransferases. GalTase is also found on the cell surface, where it associates with the cytoskeleton and functions as a receptor for extracellular oligosaccharide ligands. Although we know much regarding GalTase function on the cell surface, little is known about the mechanisms underlying its transport to the plasma membrane. Cloning of the GalTase gene revealed that there are two GalTase proteins (i.e., long and short) with different size cytoplasmic tails. This raises the possibility that differences in the cytoplasmic domain of GalTase may influence its subcellular distribution. The object of this study was to examine this hypothesis directly through the use of molecular, immunological, and biochemical approaches.^ To examine whether the two GalTase proteins are targeted to different subcellular compartments, F9 embryonal carcinoma cells were transfected with either long or short GalTase cDNAs and intracellular and cell surface enzyme levels measured. Cell surface GalTase activity was enriched in cells overexpressing the long, but not the form of short GalTase. Furthermore, a dominant negative mutation in cell surface GalTase was created by transfecting cells with GalTase cDNAs encoding a truncated version of long GalTase devoid of the extracellular catalytic domain. Overexpressing the complete cytoplasmic and transmembrane domains of long GalTase led to a loss of GalTase-dependent cellular adhesion by specifically displacing surface GalTase from its cytoskeletal associations. In contrast, overexpressing the analogous truncated protein of short GalTase had no effect on cell adhesion. Finally, chloramphenicol acetyltransferase (CAT) reporter proteins were used to determine directly whether the cytoplasmic domains of long and short GalTase were responsible for differential subcellular distribution. The cytoplasmic and transmembrane domains of long GalTase led to CAT expression on the ceil surface and its association with the detergent-insoluble cytoskeleton; the analogous fusion protein containing short GalTase was restricted to the Golgi compartment. These results suggest that the cytoplasmic domain unique to long GalTase is responsible for targeting a portion of this protein to the cell surface and associating it with the cytoskeleton, enabling it to function as a cell adhesion molecule. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Protein kinase C (PKC) is a family of serine-threonine kinases that are activated by a wide variety of hormones, neurotransmitters and growth factors. A single cell type contains multiple isoforms that are translocated to distinct and different subcellular sites upon mitogenic stimulus. Many different cellular responses are attributed to PKC activity though relatively few substrates or binding proteins have been definitively characterized. We used the hinge and catalytic domain of PKC$\alpha$ (PKC7) in a yeast two-hybrid screen to clone proteins that interact with C-kinase (PICKs). One protein which we have termed PICK1 may be involved in PKC$\alpha$-specific function at the level of the nuclear membrane after activation. Binding of PICK1 to PKC$\alpha$ has been shown to be isoform specific as it does not bind to PKC$\beta$II or PKC$\alpha$ in the yeast two-hybrid system. PICK1 mRNA expression level is highest in testis and brain with lower levels of expression in skeletal muscle, heart, kidney, lung and liver. PICK1 protein contains five PKC consensus phosphorylation sites and serves as an in vitro substrate for PKC. The PICK1 protein also contains a P-Loop motif that has been shown to bind ATP or GTP in the Ras family of oncoproteins as well as the G-Protein family. Proteins which bind ATP or GTP using this motif all have some sort of catalytic function although none has been identified for PICK1 as yet. PICK1 contains a DHR/GLGF motif at the N-terminus of the protein. The DHR/GLGF motif is contained in a number of recently described proteins and has been shown to mediate protein-protein interactions at the level of membranes and cytoskeleton. When both PKC$\alpha$ and PICK1 are co-expressed in Cos1 cells the two proteins co-localize to the perinucleus in immunoflouresence studies and co-immunoprecipitate. The binding site for PKC7 has been localized to amino acids 1-358 on PICK1 which contains the DHR/GLGF motif. Binding of PICK1 to PKC$\alpha$ requires the hinge and C-terminal domains of PKC$\alpha$. In vitro, PICK1 binds to PKC$\alpha$ and inhibits its activity as assayed by myelin basic protein phosphorylation. PICK1 also binds to TIS21, a primary response gene that is expressed in response to phorbol ester and growth factor treatment. The Caenorhabditis elegans homologue of PICK1 has been cloned and sequenced revealing a high degree of conservation in the DHR/GLGF motif. A more C-terminal region also shows a high degree of conservation, and the C. elegans PICK1 homologue binds to PKC7 suggesting a conservation of function. Taken together these results suggest that PICK1 may be involved in a PKC$\alpha$-specific function at the level of the nuclear membrane. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colon cancer is the second leading cause of cancer mortality in the U.S. Surgery is the only truly effective human colon cancer (HCC) therapy due to marked intrinsic drug resistance. The inefficacy of therapies developed for metastatic HCC suggests that advances in colon cancer chemoprevention and chemotherapy will be needed to reduce HCC mortality. The dietary fiber metabolite butyrate (NaB) is a candidate cancer chemopreventive agent that inhibits growth, promotes differentiation and stimulates apoptosis of HCC cells. Epidemiological and experimental studies suggest that dietary fiber protects against the development of HCC, however, recent large prospective trials have not found significant protection. ^ The first central hypothesis of this dissertation project is that the diversity of phenotypic changes induced by NaB in HCC cells includes molecular alterations that oppose its chemopreventive action and thereby limit its efficacy. We investigated the effect of NaB on the expression/activity of epidermal growth factor receptor (EGFR) and cyclooxygenase-2 (COX-2) in HCC HT29 cells. NaB treatment induced a 13-fold increase in EGFR expression in concert with its chemopreventive action in vitro, i.e., induction of growth suppression and G1 arrest, apoptosis and a differentiated phenotype. NaB-induced EGFR was active based on multiple lines of evidence. The EGFR was: (1) heavily phosphorylated at Tyrosine (P-Tyr); (2) associated with the cytoskeleton; (3) localized at the cell surface, and activated in response to EGF; and (4) NaB treatment of the cells induced activation of the EGFR effector Erk1/2. NaB treatment also induced a 7-fold increase in COX-2 expression. The NaB-induced COX-2 was active based on significantly increased PGE2 production. ^ The second central hypothesis is that NaB treatment would render HCC cells more chemosensitive to chemotherapy agents based on the increased apoptotic index induced by NaB. NaB treatment chemosensitized HT29 cells to 5-FU and doxorubicin, despite increases in the expression of P-glycoprotein and a related drug resistance protein (MRP). ^ These results raise the intriguing possibility that the chemopreventive effects of fiber may require concomitant treatment with EGFR and/or COX-2 inhibitors. Similarly, NaB may be a rational drug to combine with existing chemotherapeutic agents for the management of advanced HCC patients. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this research was to elucidate the mechanism of assembly of retroviruses, specifically of murine leukemia virus, as studied through the treatment of virus-infected cells with interferon and through the use of temperature sensitive (ts) mutants. Our studies have shown a rapid and specific association of Rauscher murine leukemia virus (R-MuLV) precursor polyprotein Pr65('gag) with cytoskeletal elements in infected mouse fibroblasts. The Pr65('gag) associated with Nonidet P-40 (NP40)-insoluble cytoskeletal structures appeared to be subphosphorylated in comparison to NP40-soluble Pr65('gag). The association of Pr65('gag) with skeletal elements could be disrupted by extraction of the cytoskeleton with sodium deoxycholate, an ionic detergent. Both the skeleton-associated Pr65('gag) and its NP40-soluble counterpart were labeled with {('3)H}-palmitate, indicating their probable association with lipids presumably in the plasma membrane. Pr65('gag) molecules bound to skeletal elements in the infected cell appeared to be more stable to proteolytic processing than NP40-soluble Pr65('gag). Our studies with certain ts mutants of murine leukemia virus, defective in virus assembly, including Mo-MuLV ts3 and R-MuLV ts17, ts24, ts25 and ts26, have shown that virions released at 39(DEGREES)C (nonpermissive temperature) had high levels of uncleaved Pr65('gag) relative to that seen in virions released at 33(DEGREES)C (permissive temperature). Examination of cell extracts revealed that Pr54('gag) was more stable to processing at 39(DEGREES)C than at 33(DEGREES)C, whereas the 'env' and glycosylated 'gag' proteins were processed to the same extent at both temperatures. Detergent extraction of pulse-labeled cells to generate an NP40-insoluble cytoskeleton-enriched fraction showed that in ts3-, ts17- and ts24-infected cells, Pr65('gag) accumulated in the cytoskeleton-enriched fraction. In contrast, cells infected with ts25 or ts26 showed no preferential localization of Pr65('gag) in the cytoskeleton in a short pulse, but instead, Pr65('gag) accumulated in both the NP40-soluble and -insoluble fractions during a chase-incubation. The association of Pr65('gag) with cytoskeletal elements in the cell was neither increased nor decreased by blocking virus assembly and release with interferon. Based on these and other results, we have proposed a model for the active role of cytoskeleton-associated Pr65('gag) in retrovirus assembly.^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

15-Lipoxygenase 2 (15-LOX2) is a recently cloned human lipoxygenase that shows tissue-restricted expression in prostate, lung, skin, and cornea. The protein level and enzymatic activity of 15-LOX2 have been shown to be down-regulated in prostate cancers compared with normal and benign prostate tissues. We report the cloning and functional characterization of 15-LOX2 and its three splice variants (termed 15-LOX2sv-a, 15-LOX2sv-b, and 15-LOX2sv-c) from primary prostate epithelial (NHP) cells. Western blotting with multiple NHP cell strains and prostate cancer (PCa) cell lines reveals that the expression of 15-LOX2 is lost in all PCa cell lines, accompanied by decreased enzymatic activity. 15-LOX2 is expressed at multiple subcellular locations, including cytoplasm, cytoskeleton, cell-cell border, and nucleus. Surprisingly, the three splice variants of 15-LOX2 are mostly excluded from the nucleus. To elucidate the relationship between nuclear localization, enzymatic activity, and tumor suppressive functions, we established PCa cell clones stably expressing 15-LOX2 or 15-LOX2sv-b. The 15-LOX2 clones express 15-LOX2 in the nuclei and possess robust enzymatic activity, whereas 15-LOX2sv-b clones show neither nuclear protein localization nor arachidonic acid-metabolizing activity. Interestingly, both 15-LOX2- and 15-LOX2sv-b-stable clones proliferate much slower in vitro when compared with control clones. When orthotopically implanted in nude mouse prostate, both 15-LOX2 and 15-LOX2sv-b suppress PC3 tumor growth in vivo. Finally, cultured NHP cells lose the expression of putative stem/progenitor cell markers, slow down in proliferation, and enter senescence. Several pieces of evidence implicate 15-LOX2 plays a role in replicative senescence of NHP cells: (1) promoter activity and the mRNA and protein levels of 15-LOX2 and its splice variants are upregulated in serially passaged NHP cells, which precede replicative senescence and occur in a cell-autonomous manner; (2) PCa cells stably expressing 15-LOX2 or 15-LOX2sv-b show a passage-related senescence-like phenotype; (3) enforced expression of 15-LOX2 or 15-LOX2sv-b in young NHP cells induce partial cell-cycle arrest and senescence-like phenotypes. Together, these results suggest that 15-LOX2 suppress prostate tumor development and do not necessarily depend on arachidonic acid-metabolizing activity and nuclear localization. Also, 15-LOX2 may serve as an endogenous prostate senescence gene and its tumor-suppressing functions might be associated with its ability to induce cell senescence. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mammalian Alix (ALG2-interacting protein X&barbelow;) is a conserved adaptor protein that is involved in endosomal trafficking, apoptosis and growth factor receptor turnover. Accumulating evidence also indicates that Alix plays roles in promoting/maintaining spread and aligned fibroblast morphology in monolayer culture. Since cell morphology is determined by the structure and dynamics of an integrin-mediated transmembrane protein network that links extracellular matrix to intracellular cytoskeleton, we hypothesized that Alix plays direct or indirect roles in regulating certain components or steps in this transmembrane protein network. To test this hypothesis, we first examined the subcellular localization of Alix and discovered that, as a predominantly cytoplasmic protein, Alix is also present on the substratum/cell surface and in the conditioned medium of fibroblast cultures. Further, precoating of culture surfaces with recombinant Alix promotes spreading and fibronectin assembly to NIH/3T3 cells, and siRNA-mediated Alix knockdown in W138 cells has the opposite effects. These findings indicate the extracellular functions of Alix in regulating cell spreading and extracellular matrix assembly. In a separate study, we analyzed Alix immunocomplexes from normal fibroblast W138 cells by mass spectrometry and identified actin as a major partner protein of Alix. Follow-up studies demonstrated that Alix preferentially binds filamentous actin (F-actin) in vitro and is required for maintaining normal F-actin content and proper actin cytoskeleton assembly in W138 cells. These findings establish direct and essential roles of Alix in regulating actin cytoskeleton. Finally, we investigated the effects of Alix knockdown on the activation and subcellular localization of FAK and Pyk2, the focal adhesion kinases required for cell spreading/migration by promoting turnover of integrin-mediated cell adhesions. We discovered that Alix knockdown inhibits FAK and Pyk2 localizations to focal adhesions or plasma membrane, in association with characteristics of reduced turnover of focal adhesions. These findings reveal a positive role of Alix in focal adhesion turnover. Based on these results, we conclude that Alix targets both intracellularly and extracellularly components to regulate extracellular matrix remodeling, actin cytoskeleton assembly and focal adhesion turnover. A combination of these three functions of Alix explains its crucial role in regulating spread and aligned fibroblast morphology. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Traumatic brain injury (TBI) often results in disruption of the blood brain barrier (BBB), which is an integral component to maintaining the central nervous system homeostasis. Recently cytosolic calcium levels ([Ca2+]i), observed to elevate following TBI, have been shown to influence endothelial barrier integrity. However, the mechanism by which TBI-induced calcium signaling alters the endothelial barrier remains unknown. In the present study, an in vitro BBB model was utilized to address this issue. Exposure of cells to biaxial mechanical stretch, in the range expected for TBI, resulted in a rapid cytosolic calcium increase. Modulation of intracellular and extracellular Ca2+ reservoirs indicated that Ca2+ influx is the major contributor for the [Ca2+]i elevation. Application of pharmacological inhibitors was used to identify the calcium-permeable channels involved in the stretch-induced Ca2+ influx. Antagonist of transient receptor potential (TRP) channel subfamilies, TRPC and TRPP, demonstrated a reduction of the stretch-induced Ca2+ influx. RNA silencing directed at individual TRP channel subtypes revealed that TRPC1 and TRPP2 largely mediate the stretch-induced Ca2+ response. In addition, we found that nitric oxide (NO) levels increased as a result of mechanical stretch, and that inhibition of TRPC1 and TRPP2 abolished the elevated NO synthesis. Further, as myosin light chain (MLC) phosphorylation and actin cytoskeleton rearrangement are correlated with endothelial barrier disruption, we investigated the effect mechanical stretch had on the myosin-actin cytoskeleton. We found that phosphorylated MLC was increased significantly by 10 minutes post-stretch, and that inhibition of TRP channel activity or NO synthesis both abolished this effect. In addition, actin stress fibers formation significantly increased 2 minutes post-stretch, and was abolished by treatment with TRP channel inhibitors. These results suggest that, in brain endothelial cells, TRPC1 and TRPP2 are activated by TBI-mechanical stress and initiate actin-myosin contraction, which may lead to disruption of the BBB.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Adherens junctions (AJs) and basolateral modules are important for the establishment and maintenance of apico-basal polarity. Loss of AJs and basolateral module members lead to tumor formation, as well as poor prognosis for metastasis. Recently, in mammalian studies it has been shown that loss of either AJ or basolateral module members deregulate Yorkie activity, the downstream transcriptional effector of the Hippo pathway. Importantly, it is unclear if AJ and basolateral components act through the same or parallel mechanisms to regulate Yorkie activity. Here, we dissect how loss of AJ and basolateral components affects Hippo signaling in Drosophila. Surprisingly, while scrib knock-down tissue displays increased reporter activity autonomously, α-cat knock-down tissue shows a cell autonomous decrease and a cell non-autonomous increase of Hippo reporter activity. We provided several lines of evidence to show the differential regulation in polarity protein localizations and oncogenic cooperative overgrowth by AJs and basolateral complexes. Finally, we show that Hippo pathway activity is induced in α-cat and scrib double knocked-down tissue. Taken together, our results provide evidence to show that basolateral modules and AJs act in parallel to modulate Hippo pathway activity. Non-muscle myosin II is an actomyosin component that interacts with the actin. Non-muscle myosin II also interacts with lgl, though the function of this interaction is not clear. Our lab demonstrated that modulating F-actin regulates Hippo pathway activity, and lgl also has been described as a Hippo pathway regulator. Therefore we suspect that myosin II is also involved in Hippo pathway regulation. We first characterized non-muscle Myosin II as a novel tumor suppressor gene by affecting Hippo pathway activity. Upstream regulators of Myosin II, members in the Rho signaling pathway, also displayed similar phenotypes as the Myosin II knock-down tissues. Apoptosis is also induced in myosin II knock-down tissues, however, blocking cell death does not affect myosin II knock-down induced Hippo activation. Our data suggested hyperactivating myosin II induced F-actin accumulation so therefore induces Hippo target activation. Unexpectedly, we also observed that reducing F-actin activity induced Hippo target activation in vivo. These controversial data indicated that actomyosin may regulate the Hippo pathway through multiple mechanisms.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diarrhea remains a significant cause of worldwide morbidity and mortality. Over 4 million children die of diarrhea annually. Although antibiotics can be used as prophylaxis or for treatment of diarrhea, concern remains over antibiotic resistance. Rifaximin is a semi-synthetic rifamycin derivative that can be used to treat symptoms of infectious diarrhea, inflammatory bowel syndrome, bacterial overgrowth of the small bowel, pouchitis, and fulminant ulcerative colitis. Rifaximin is of particular interest because it is poorly adsorbed in the intestines, shows no indication of inducing bacterial resistance, and has minimal effect on intestinal flora. In order to better understand how rifaximin functions, we sought to compare the protein expression profile of cells pretreated with rifaximin, as compared to cells treated with acetone, rifamycin (control antibiotic), or media (untreated). 2-D gel electrophoresis identified 38 protein spots that were up- or down-regulated by over 2-fold in rifaximin treated cells compared to controls. 16 of these spots were down-regulated, including keratin, annexin A5, intestinal-type alkaline phosphatase, histone h4, and histone-binding protein RbbP4. 22 spots were up-regulated, including heat shock protein HSP 90 alpha, alkaline phosphatase, and fascin. Many of the identified proteins are associated with cell structure and cytoskeleton, transcription and translation, and cellular metabolism. A better understanding of the functionality of rifaximin will identify additional potential uses for rifaximin and determine for whom the drug is best suited. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Injury is an inevitable part of life, making wound healing essential for survival. In postembryonic skin, wound closure requires that epidermal cells recognize the presence of a gap and change their behavior to migrate across it. In Drosophila larvae, wound closure requires two signaling pathways (the Jun N-terminal kinase (JNK) pathway and the Pvr receptor tyrosine kinase signaling pathway) and regulation of the actin cytoskeleton. In this and other systems, it remains unclear how the signaling pathways that initiate wound closure connect to the actin regulators that help execute wound- induced cell migrations. Here we show that chickadee, which encodes the Drosophila Profilin, a protein important for actin filament recycling and cell migration during development, is required for the physiological process of larval epidermal wound closure. After injury, chickadee is transcriptionally upregulated in cells proximal to the wound. We found that JNK, but not Pvr, mediates the increase in chic transcription through the Jun and Fos transcription factors. Finally, we show that chic deficient larvae fail to form a robust actin cable along the wound edge and also fail to form normal filopodial and lamellipodial extensions into the wound gap. Our results thus connect a factor that regulates actin monomer recycling to the JNK signaling pathway during wound closure. They also reveal a physiological function for an important developmental regulator of actin and begin to tease out the logic of how the wound repair response is organized.